RClamp0551P Ultra-Low Capacitance 1-Line, 5V ESD protection

PROTECTION PRODUCTS - RailClamp®

Description

RailClamp® TVS arrays are ultra low capacitance ESD protection devices designed to protect high speed data interfaces. This series has been specifically designed to protect sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by ESD (electrostatic discharge), CDE (Cable Discharge Events), and EFT (electrical fast transients).

RClamp®0551P has a maximum capacitance of 0.50pF. This allows it to be used on circuits operating in excess of 5GHz without appreciable signal attenuation. They exceed the ESD immunity requirements of IEC 61000-4-2, Level 4.

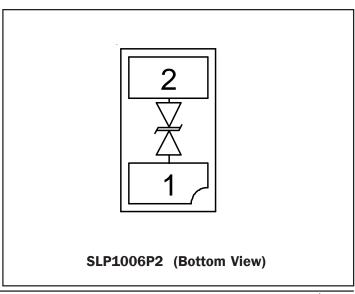
RClamp0551P is in a 2-pin SLP1006P2 package measuring $1.0 \times 0.6 \times 0.5$ mm. Leads are spaced at a pitch of 0.65mm and feature a lead-free finish. Each device will protect one high-speed line operating at 5 volts. It gives the designer the flexibility to protect single lines in applications where arrays are not practical. The combination of small size, low capacitance, and high ESD surge capability makes them ideal for use in applications such as cellular phones and digital video interfaces.

Features

- ◆ Transient protection for data lines to IEC 61000-4-2 (ESD) ±17kV (air), ±17kV (contact) IEC 61000-4-4 (EFT) 40A (tp = 5/50ns) Cable Discharge Event (CDE)
- Ultra-small package (1.0 x 0.6 x 0.5mm)
- Protects one data or I/O line
- Low capacitance: 0.50pF
- Dynamic Resistance: 1.3 Ohms Typical
- ◆ Low ESD clamping voltage
- Operating voltage: 5V
- ◆ Solid-state silicon-avalanche technology

Mechanical Characteristics

- ◆ SLP1006P2 package
- Molding compound flammability rating: UL 94V-0
- Marking: Marking code
- Packaging: Tape and Reel
- ◆ Lead Finish: NiPdAu
- ◆ Pb-Free, Halogen Free, RoHS/WEEE Compliant


Applications

- ◆ USB 2.0
- V-By-One
- Display Port
- MHL / MDDI
- LVDS Interfaces
- eSATA Interfaces

Dimensions

0.60 0.65 0.50 Nominal Dimensions (mm)

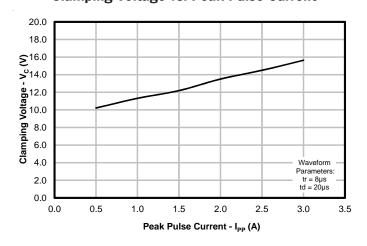
Schematic & Pin Configuration

Absolute Maximum Rating

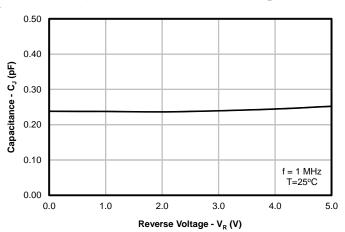
Rating	Symbol	Value	Units
Peak Pulse Power (tp = 8/20µs)	P _{pk}	60	Watts
Maximum Peak Pulse Current (tp = 8/20μs)	l _{pp}	3	Amps
ESD per IEC 61000-4-2 (Air) ¹ ESD per IEC 61000-4-2 (Contact) ¹	V _{ESD}	+/- 17 +/- 17	kV
Operating Temperature	T _J	-55 to +125	°C
Storage Temperature	T _{STG}	-55 to +150	°C

Electrical Characteristics (T=25°C)

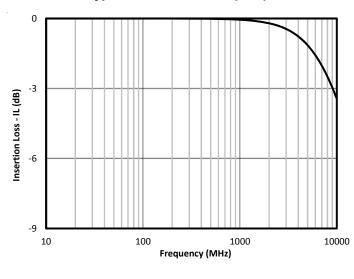
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				5	V
Breakdown Voltage	V _{BR}	I _{BR} = 1mA	6	9.3	11	V
Reverse Leakage Current	I _R	V _{RWM} = 5V		0.01	0.100	μΑ
Clamping Voltage	V _c	$I_{pp} = 1A$, tp = 8/20 μ s		12.5	15	V
Clamping Voltage	V _c	$I_{pp} = 3A$, tp = 8/20 μ s		15.5	20	V
ESD Clamping Voltage ²	V _c	$I_{pp} = 4A,$ tlp = 0.2/100ns		16.5		V
ESD Clamping Voltage ²	V _c	I _{PP} = 16A, tIp = 0.2/100ns		32		V
Dynamic Resistance ^{2, 3}	R _{DYN}	tlp = 0.2 / 100ns		1.3		Ohms
Junction Capacitance	C _j	V _R = OV, f = 1MHz		0.25	0.50	pF

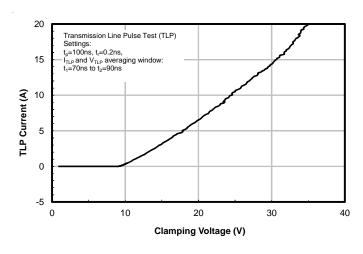

Notes

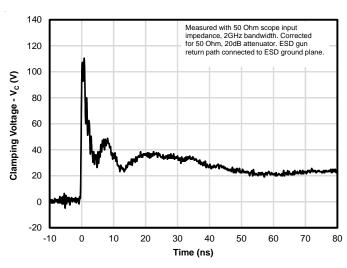
- 1)ESD gun return path connected to ESD ground reference plane.
- 2)Transmission Line Pulse Test (TLP) Settings: $t_p = 100$ ns, $t_r = 0.2$ ns, I_{TLP} and V_{TLP} averaging window: $t_1 = 70$ ns to $t_2 = 90$ ns.
- $\stackrel{\circ}{\text{3}}$) Dynamic resistance calculated from I_{pp} = 4A to I_{pp} = 16A
- 4) Device is electrically symmetrical

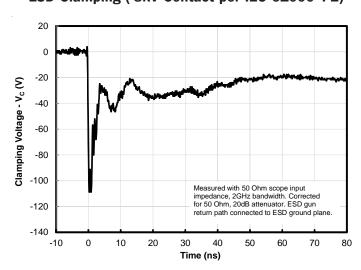


Typical Characteristics


Clamping Voltage vs. Peak Pulse Current


Capacitance vs. Reverse Voltage


Typical Insertion Loss (S21)

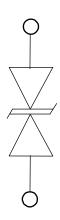

TLP Characteristic

ESD Clamping (+8kV Contact per IEC 61000-4-2)

ESD Clamping (-8kV Contact per IEC 61000-4-2)

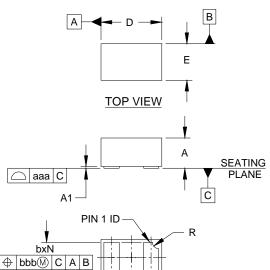
Applications Information

Device Connection Options

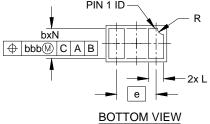

These low capacitance TVS diodes are designed to provide common mode protection for one high-speed line or differential protection for one line pair. The device is bidirectional and may be used on lines where the signal polarity is positive and negative.

Circuit Board Layout Recommendations for Suppression of ESD.

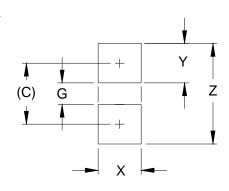
Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended:


- Place the TVS near the input terminals or connectors to restrict transient coupling.
- Minimize the path length between the TVS and the protected line.
- Minimize all conductive loops including power and ground loops.
- The ESD transient return path to ground should be kept as short as possible.
- Never run critical signals near board edges.
- Use ground planes whenever possible.

Equivalent Circuit Diagram



Outline Drawing - SLP1006P2


DIMENSIONS						
DIM	INCHES			MILLIMETERS		
DIIVI	MIN	NOM	MAX	MIN	MOM	MAX
Α	.016	.020	.022	0.40	0.50	0.55
A1	.000	.001	.002	0.00	0.03	0.05
b	.018	.020	.022	0.45	0.50	0.55
D	.035	.039	.043	0.90	1.00	1.10
E	.020	.024	.028	0.50	0.60	0.70
е	.0)26 BS	SC	0.	.65 BS	Ö
L	.008	.010	.012	0.20	0.25	0.30
R	.002	.004	.006	0.05	0.10	0.15
Ν		2			2	
aaa		.003			0.08	
bbb		.004			0.10	

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).

Land Pattern - SLP1006P2

DIMENSIONS				
DIM	INCHES	INCHES MILLIMETERS		
С	(.033)	(0.85)		
G	.012	0.30		
X	.024	0.60		
Υ	.022	0.55		
Z	.055	1.40		

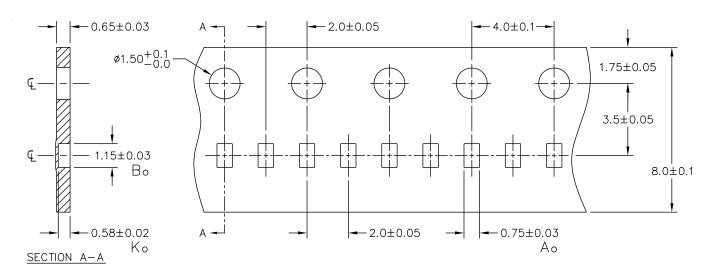
NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.

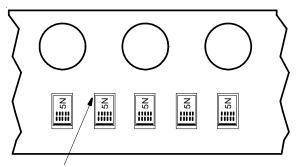
Marking Codes

Notes:

- 1) Device is electrically symmetrical
- 2) Marking will also include line matrix date code


Ordering Information

Part Number	Qty per Reel	Reel Size
RClamp0551P.TNT	10,000	7 Inch
RClamp0551P.TST	30,000	13 Inch


Notes:

RailClamp and RClamp are trademarks of Semtech Corporation

Carrier Tape Specification

NOTES: ALL DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.

Pin 1 Location (Towards Sprocket Holes)

Device Orientation in Tape

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804