Produc

Thermally-Enhanced High Power RF LDMOS FET 250 W, 28 V, 1805 - 1880 MHz

Description

The PTFB182557SH is a 250-watt LDMOS FET specifically designed for use in Doherty cellular power amplifier applications in the 1805 to 1880 MHz frequency band. Input and output matching has been optimized for maximum performance as the peak side transistor in Doherty amplifiers. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PTFB182557SH
Package H-34288G-4/2

Features

- Broadband internal matching
- Optimized for use as peak side in Doherty amplifiers
- Typical two-carrier WCDMA performance,
$1842 \mathrm{MHz}, 28 \mathrm{~V}, 3 \mathrm{GPP}$ signal, PAR = 8 dB ,
10 MHz carrier spacing
- Average output power $=75 \mathrm{~W}$
- Linear gain $=18.5 \mathrm{~dB}$
- Efficiency = 31\%
- Intermodulation distortion $=-31 \mathrm{dBc}$
- Adjacent channel power= -36 dBc
- Typical CW performance, $1842 \mathrm{MHz}, 28 \mathrm{~V}$
- Output power at $\mathrm{P}_{1 \mathrm{~dB}}=250 \mathrm{~W}$
- Efficiency = 49\%
- Gain $=18 \mathrm{~dB}$
- Capable of handling 10:1 VSWR @28 V, 240 W (CW) output power
- Integrated ESD protection
- Low thermal resistance
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1350 \mathrm{~mA}, \mathrm{P}_{\mathrm{OUT}}=60 \mathrm{~W}$ avg, $f=1842.5 \mathrm{MHz}, 3 \mathrm{GPP}$ signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average $=10 \mathrm{~dB} @ 0.01 \%$ CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Linear Gain	G_{ps}	18	19	-	dB
Drain Efficiency	η_{D}	31	32.5	-	$\%$
Adjacent Channel Power Ratio	ACPR	-	-33	-31	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device—observe handling precautions!

PTFB182557SH

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}(\mathrm{BR}) \mathrm{DSS}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.05	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.4 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{GS}}$	2.3	2.8	3.3	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 200 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta \mathrm{CC}}$	0.232	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Order Code	Package and Description	Shipping
PTFB182557SH V1 R250	PTFB182557SHV1R250XTMA1	H-34288G-4/2, earless flange	Tape \& Reel, 250 pcs

Typical Performance (data taken in a production test fixture)

Typical Performance (cont.)

Broadband Circuit Impedance

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	$\mathbf{j X}$	\mathbf{R}	$\mathbf{j X}$
1805	1.48	-3.43	2.33	-5.42
1842.5	2.05	-4.08	2.22	-5.07
1880	2.82	-4.70	1.89	-5.05

PTFB182557SH

Reference Circuit

Reference circuit input schematic for $f=1880 \mathrm{MHz}$

Reference circuit output schematic for $f=1880 \mathrm{MHz}$

Reference Circuit (cont.)

Reference Circuit Assembly

DUT	PTFB182557SH
Test Fixture Part No.	LTN/PTFB182557SH
PCB	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_{r}=3.66$
Find Gerber files for this test fixture on the Infineon Web site at http./wwwinfineon com/fp	

Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower

Electrical Characteristics at 1880 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL101		$\begin{aligned} & \mathrm{W} 1=1.270, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.270, \\ & \mathrm{~W} 4=1.270 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=50, \\ & \mathrm{~W} 4=50 \end{aligned}$
TL102, TL115	$0.021 \lambda, 54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.016, \mathrm{~W} 3=2.032$	$\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=80$
TL103, TL104	$0.095 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=9.195$	W = 40, L = 362
TL105	$0.013 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.270$	$\mathrm{W}=40, \mathrm{~L}=50$
TL106	$0.014 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=1.321$	$\mathrm{W}=50, \mathrm{~L}=52$
TL107	$0.038 \lambda, 54.17 \Omega$	$W=1.016, L=3.637$	$W=40, L=143$
TL108	$0.052 \lambda, 4.99 \Omega$	$\mathrm{W}=19.050, \mathrm{~L}=4.572$	$\mathrm{W}=750, \mathrm{~L}=180$
TL109	$0.014 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.346$	$W=40, L=53$
TL110	$0.016 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.524$	$W=40, L=60$
TL111	$0.178 \lambda, 63.89 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=17.356$	$\mathrm{W}=30, \mathrm{~L}=683$
TL112	$0.027 \lambda, 34.72 \Omega$	$\mathrm{W}=1.981, \mathrm{~L}=2.540$	W = 78, L = 100
TL113		$\mathrm{W} 1=1.270, \mathrm{~W} 2=2.286$	$\mathrm{W} 1=50, \mathrm{~W} 2=90$
TL114	$0.011 \lambda, 54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=40, \mathrm{~W} 2=50, \mathrm{~W} 3=40$
TL116, TL117, TL118		W = 1.016	$\mathrm{W}=40$
TL119	$0.028 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=2.652$	$\mathrm{W}=50, \mathrm{~L}=104$
TL120, TL127	$0.012 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.143$	W = 40, L = 45
TL121	$0.014 \lambda, 31.24 \Omega$	$\mathrm{W}=2.286, \mathrm{~L}=1.270$	W = 90, L = 50
TL122, TL123	$0.013 \lambda, 54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.270$	$\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=50$
TL124		$\mathrm{W} 1=19.050, \mathrm{~W} 2=1.270$	$\mathrm{W} 1=750, \mathrm{~W} 2=50$
TL125		W1 = 0.762, W2 = 1.016	$\mathrm{W} 1=30, \mathrm{~W} 2=40$
TL126	$0.063 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=6.134$	W = 40, L = 242
TL128		$\begin{aligned} & \mathrm{W} 1=14.986, \mathrm{~W} 2=1.016, \mathrm{~W} 3=14.986, \\ & \mathrm{~W} 4=1.016 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=590, \mathrm{~W} 2=40, \mathrm{~W} 3=590 \\ & \mathrm{~W} 4=40 \end{aligned}$
TL129		$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.981$	$\mathrm{W} 1=40, \mathrm{~W} 2=78$
TL130	$0.021 \lambda, 47.12 \Omega$	W1 = 1.270, W2 = 1.270, W3 = 2.032	$\mathrm{W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=80$
TL131	$0.099 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=9.449$	$\mathrm{W}=50, \mathrm{~L}=372$

Reference Circuit (cont.)

Electrical Characteristics at 1880 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output			
TL201	$0.005 \lambda, 53.60 \Omega$	$\mathrm{W} 1=1.034, \mathrm{~W} 2=1.034, \mathrm{~W} 3=0.508$	$\mathrm{W} 1=41, \mathrm{~W} 2=41, \mathrm{~W} 3=20$
TL202	$0.021 \lambda, 53.60 \Omega$	$\mathrm{W} 1=1.034, \mathrm{~W} 2=1.034, \mathrm{~W} 3=2.032$	$\mathrm{W} 1=41, \mathrm{~W} 2=41, \mathrm{~W} 3=80$
TL203	$0.037 \lambda, 52.90 \Omega$	$\mathrm{W}=1.057, \mathrm{~L}=3.556$	$\mathrm{W}=42, \mathrm{~L}=140$
TL204	$0.005 \lambda, 53.60 \Omega$	$\mathrm{W}=1.034, \mathrm{~L}=0.508$	W = 41, L= 20
TL205	$0.116 \lambda, 6.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=10.160$	$\mathrm{W}=550, \mathrm{~L}=400$
TL206	$0.047 \lambda, 4.99 \Omega$	$\mathrm{W}=19.050, \mathrm{~L}=4.064$	W = 750, L = 160
TL207, TL221	$0.006 \lambda, 19.85 \Omega$	$\mathrm{W}=4.064, \mathrm{~L}=0.508$	W = 160, L = 20
TL208, TL223	$0.176 \lambda, 19.85 \Omega$	$\mathrm{W}=4.064, \mathrm{~L}=16.104$	W = 160, L = 634
TL209, TL222	$0.038 \lambda, 19.85 \Omega$	$\mathrm{W}=4.064, \mathrm{~L}=3.454$	W = 160, L = 136
TL210, TL211, TL212, TL213, TL214, TL215, TL216, TL224, TL225, TL226	$0.028 \lambda, 19.85 \Omega$	$\mathrm{W} 1=4.064, \mathrm{~W} 2=4.064, \mathrm{~W} 3=2.540$	$\mathrm{W} 1=160, \mathrm{~W} 2=160, \mathrm{~W} 3=100$
TL217		$\mathrm{W} 1=13.970, \mathrm{~W} 2=19.050$	$\mathrm{W} 1=550, \mathrm{~W} 2=750$
TL218		$\mathrm{W} 1=1.034, \mathrm{~W} 2=13.970$	$\mathrm{W} 1=41, \mathrm{~W} 2=550$
TL219	$0.097 \lambda, 53.52 \Omega$	$\mathrm{W}=1.036, \mathrm{~L}=9.388$	$\mathrm{W}=41, \mathrm{~L}=370$
TL220	$0.019 \lambda, 53.52 \Omega$	$\mathrm{W}=1.036, \mathrm{~L}=1.788$	$\mathrm{W}=41, \mathrm{~L}=70$

PTFB182557SH

Reference Circuit (cont.)

Reference circuit assembly diagram (not to scale)*

PTFB182557SH

Reference Circuit (cont.)

Components Information

Component	Description	Suggested Manufacturer	P/N
Input			
C101, C103	Chip capacitor, 2.2 pF	ATC	ATC100A2R2CW500XB
C102	Chip capacitor, 3.9 pF	ATC	ATC100B3R9CW500XB
C104, C107	Chip capacitor, 10 pF	ATC	ATC100A100JW500XB
C 105	Chip capacitor, 0.1 pF	ATC	ATC100B0R1CW500XB
C106	Chip capacitor, 10 pF	ATC	ATC100B100JW500XB
C 108	Chip capacitor, 0.9 pF	ATC	ATC100B0R9CW500XB
C801, C802, C803	Capacitor, 1000 pF	Digi-Key	PCC1772CT-ND
R101	Resistor, 0Ω	Digi-Key	P0.0GCT-ND
R102, R103, R104	Resistor, 10Ω	Digi-Key	P10GCT-ND
R801	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
R802	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R803	Resistor, 100Ω	Digi-Key	P101ECT-ND
R804	Resistor, 10Ω	Digi-Key	P10ECT-ND
S1	Transistor	Digi-Key	BCP56
S2	Voltage Regulator	Digi-Key	LM78L05ACM-ND
S3	Potentiometer, $2 \mathrm{k} \Omega$	Digi-Key	3224W-202ECT-ND

Output

$\mathrm{C} 201, \mathrm{C} 202$	Capacitor, $220 \mu \mathrm{~F}$	Digi-Key	PCE4444TR-ND
$\mathrm{C} 203, \mathrm{C} 204, \mathrm{C} 209, \mathrm{C} 210$	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	$587-1818-2-\mathrm{ND}$
C 205	Chip capacitor, 10 pF	ATC	ATC100B100JW500XB
C 206	Chip capacitor, 2.7 pF	ATC	ATC100B2R7CW500XB
$\mathrm{C} 207, \mathrm{C} 208, \mathrm{C} 211, \mathrm{C} 212$	Chip capacitor, $4.7 \mu \mathrm{~F}$	Digi-Key	$490-1864-2-\mathrm{ND}$
C 213	Chip capacitor, 0.7 pF	ATC	ATC100B0R7CW500XB

PTFB182557SH

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

PTFB182557SH V1

Revision History:		2012-06-25
Previous Version:	2012-03-25, Advance Specification	Data Sheet
Page	Subjects (major changes since last revision)	
All	Data Sheet reflects released product specifications	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

Edition 2012-06-25

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

